
STATIONARY KINETIC MODEL OF A DENDRITE TWO-PHASE ZONE 

A. N. Cherepanov UDC 536.421.4 

The theoretical investigation of crystallization processes for metal alloys is associ- 
ated with the need to describe the phase transformation regularities in the two-phase zone. 
Either volume nucleation and growth of the solid phase [i], or the dendritic nature of the 
development of the two-phase zone (the theory of a quasiequilibrium two-phase zone) [2] is 
assumed in the mathematical models presently in existence. It is assumed in the latter that 
the two-phase zone is sufficiently finely dispersed and its development is realized in such 
a way that supercooling of the melt would be zero during the whole crystallization process. 

It is known that the dendritic form of crystallization is characteristic for the major- 
ity of metal alloys, where the dendrites grow in the supercooled melt. Despite the small- 
ness of its magnitude, this supercooling is the basic motive force of crystal growth, and 
therefore, of the development of a two-phase zone, where formation of the ingot structure 
occurs. Hence, an investigation of the kinetics of dendrite growth in the two-phase zone 
is of considerable interest. This kinetics is determined both by the thermal and diffusion 
phenomena as well as the kinetic processes on the surface of the growing crystals. The in- 
fluence of supercooling on the kinetics of the development of a two-phase binary alloy zone 
is performed in [3] without taking account of diffusion processes and considering the den- 
drite shape. 

To find the means for optimal control of the formation, physical and mechanical proper- 
ties of the cast metal, aquantitative description of the regularities of dendrite growth, 
their shape and impurity the distribution during crystallization is necessary. 

A one-dimensional stationary model of the two-phase zone taking account of the kinetics 
of dendrite growth and the distribution of the soluble impurity in the solid phase is assumed 
in this paper. 

i. Let us consider the steady-state process of crystallization of a binary alloy moving 
along the z axis at a constant velocity v in an external cooling system (Fig. I). Let us 
consider the two-phase zone to consist of homogeneous plane-symmetric dendrites of variable 
section. The number of dendrites n per unit cross section of ingot does not vary during the 
crystallization. The rate of dendrite growth in a normal direction to their surface R(z) is 
a function of the local supercooling AT 

v~ = FI(Ar). (I. 1) 

The relation of the velocity v n to the velocity v in the steady-state mode is determined by 
the expression 

v~ = vR ' ( z ) /V l  + [R'(z)p, (1 .2)  

analogous to the relationship used in determining the rate of crystallization in the theory 
of continuous casting [4]. Here the prime denotes the derivative with respect to z and 2R(z) 
is the dendrite dimension in the cross section at a certain point z. From (I.i) and (1.2) 
we have 

vR' ( z ) / V t  + iR' (z)p = F~ (AT). (1 .3)  

The rate of dendrite vertex growth in the case under consideration equals the velocity of 
melt motion and is also a function of the appropriate local supercooling. Taking account of 
the possibility of anisotropy in the growth of crystals in the longitudinal and transverse 
directions, we write 

v = Fo(AT). (i. 4) 

Furthermore, for definiteness we take 
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F~(AT) = K ~ A T  ~ ,  m ~ i ,  i = 0 ,  1, (1.5) 

where K i is the kinetic factor whose magnitude is considered constant in the considered range 
of the change in AT. The anisotropy of dendrite growth can be taken into account by the dif- 
ference between the magnitudes of the factors K, and Ko. 

The magnitude of the supercooling AT taking account of the influence of the local den- 
drite surface curvature on the liquidus temperature is determined by the expression 

----~-p I T; (1.6) 

R ~ 
kr = (i + n " )  3/''' (1 .7 )  

where k r is the value of the local dendrite surface curvature, a is the surface tension, M is 
the latent heat of fusion, p is the density, TI(C) is the equilibrium value of the liquidus 
temperature for k r = 0, and C is the concentration of soluble impurity. 

Taking account of (1.5)-(1.7), we obtain a kinetic equation to determine the dendrite 
shape in the two-phase zone from (1.3) 

Taking account of (1.5) and (1.6), the relationship (1.4) sets up a connection between the 
velocity of two-phase zone motion and the temperature of the start of crystallization (or 
the magnitude of the supercooling on the two-phase zone front) 

v = K o { T z ( C s . ) [ l  - -  a k , ( z s ) / •  - -  Ts} =, (1.9) 

where the letter s denotes quantities corresponding to the start of the two-phase zone. 
Equations governing the changes in the temperature T and the concentration C during melt 
solidification must be appended to (1.8) and (1.9). Let us assume that the crystallizing 
ingot has plane or axial symmetry, its dimension in the transverse direction is sufficiently 
small, and the thermophysical parameters and diffusion coefficient are constants. The con- 
ditions 

O-~rT ,=r.-- ~ I =0, JT[=o= o,-I~=o -~ ( r l . . . .  - -  r ~ ) ,  o c  o r  o c  = 0 
-~r T=ro 

are valid on the side surface of the ingot and on the axis of symmetry, respectively, where 
is the coefficient of heat elimination from the ingot to the cooling medium, I is the co- 

efficient of heat conduction, T c is the temperature of the cooling medium, ro is the radius 
(half-thickness of the ingot). Forming the heat and mass balance for a certain layer dz (Fig. 
i), we obtain the heat and mass transfer equations which we write after appropriate manipula- 
tion in the form 

_ _v T' (i + v) = (T -- To) § ~ ~' : O; T" a .%~ (i. i0) 

, ) l  

~ = 0  for T >/ Ts, ~__--- i ~r T < T., 

where a is the thermal diffusivity, ~ is the solid phase section in the two-phase zone, D is 
the diffusion coefficient in the liquid phase, k is the impurity distribution factor, T K is 
the crystallization end temperature, 9 = 0 in the case of a plane ingot, and ~ = 1 in the 
case of a circular ingot. Equations (i.i0) and (l.ll) are obtained under the condition of 
rapid equilibration of the impurity temperature and concentration over the ingot section, 
and the absence of diffusion in the solid phase since for metal alloys DT/D ~ 10 -~, where 
D T is the diffusion coefficient in the solid phase. 

The relation between the magnitude of the solid phase section ~ and the transverse dimen- 
sion of the dendrite 2R is determined by the relation 

~(z)  = 2 n R ( z ) ,  (i. 12) 

which is valid for a plane-symmetrlc ingot. To obtain the appropriate dependence in the 
case of a circular ingot, we consider a certain annular interval dr >> R in a plane of the 
ingot cross section. The area of the ring is fo = 2~ridr, where r i is the distance between 
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Fig. 1 

the ingot axis and the i-th dendrite. Therefore, the relative solid phase section is f = 
4~nR(R + ri)fo. Replacing the discrete dendrite distribution by a continuous distribution 
and taking the average of the expression obtained for ~ = 4~nR(R + r i) relative to the ingot 
radius ~i, we find 

r = 4 a n R ( R  + 2~/3) .  ( 1 . 1 3 )  

We express the dendrite density n by spacing between the dendrite axes d~ 

n = 11~.  ( 1 . 1 4 )  

On the other hand, the dependence [5, 6] 

dx = bl(V~y) -s ( 1 . 1 5 )  

holds for the quantity d~, where the exponent s is almost 0.5, G~ is the value of the temper- 
ature gradient at the front of the two-phase zone, and b~ is a factor characterizing the 
alloy under consideration. 

From (1.14) and (i.15) we have 

n = b~ I (G1v) s. (I. 16) 

Therefore, the differential equations (1.8), (I.i0), (i.ii) obtained determine the 
desired functions, the changes in impurity temperature and concentration, the dendrite shape, 
and the solid phase section in the two-phase zone, in combination with the relationship 
(1.12) or (1.13) and with (1.16) taken into account for appropriate boundary conditons. 

2. In order to obtain analytical dependences, we consider the approximate solution of 
the problem of crystallizing a supercooled binary alloy. We assume that the crystallizing 
ingot has a plane symmetric shape, its motion velocity is along the z axis, and the origin 
of coordinates coincides with the beginning of the two-phase zone. The liquid phase occupies 
the half-space z < 0 (domain i), and the two-phase zone z > 0 (domain 2), For z =--~ the 
melt temperature equals the temperature of the cooling medium Tc~. At the end of the two- 
phase zone the alloy is cooled to the temperature of the external medium, or Tca. For 
generality, it is here assumed that the temperature of the cooling medium and the heat trans- 
fer coefficient in domains i and 2 can have different values, respectively, which are con- 
stants within the limits of their domains. Moreover, by considering that a normal growth 
mechanism is valid for dendrites, we set m = i [7, 8]. Going over to dimensionless variables 
and taking account of the assumptions made above, we write the system (1.8)-(1.12) in the 
form 

Pert1 
r '  (z) = ~ [ , - o (x)l, o ~< Y <~ C J / v ;  

Oy (z) --  Pe O~ (x) - -  B i iO  I (x) = - -  u Pe N Y '  (x) - -  Bi iAOcj ;  

X(z)  = [ t - - N Y ( z ) ]  h - l , Y  = 0  for z < O ;  

Oz = ( p ( X ) ;  

Pe  = PeHo(AO - -  Os),  

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

716 



where 0.3 = (Tj -- Tcl)/Tl0; 81 = (T l -- Tcl)/Tl0; 40 = I-- Tcl/Tl0; X = C/C0; Y = R/r0; Pe = 

vr0/a; Bi = aro(l + v)/l; PeKI = KiTl0r0/a; PeKO = KoTl0r0/a; M = M0/cT10 ; N = 2r0n; x = z/ 

r0; Aecj = (Tcj -- Tcl)/Tl0. 

The subscript J = 1 denotes the temperature and the heat transfer coefficient in the do- 
main i, and the subscript J = 2 in the domain 2. The quantity ~K determines the section of 
the solid phase at the end of the two-phase zone, Tla is the value of the liquidus tempera- 
ture corresponding to the concentration C = Ca. Equation (2.3) follows from (i.ii) for D = 
0, k = const, and agrees with the Schale equation [5]. 

We solve the system (2.1)-(2.4)under the boundary conditions: 

O~[z=_~ = 0, O,[z=0 = Os[zfo = O~;] (2.6) 

Ylz=o=O (2.8) 

taking (2.5) into account. The liquidus equation (2.5) is hence determined by the phase dla- 
gram. Considering the latter linear, we write 

O z = O A - -  ~ X ,  ( 2 . 9 )  

where | = (TA-- Tc,)/Tlo, TA is the melting point of the pure component, B = (TA -- Tlo)/Tlo 
is the slope of the liquidus llne. Linearlzing (2.3), we obtain 

X = i  - k ( i - - ~ N Y .  

Substituting this latter into (2.9) with the expression for 8 taken into account, we find 

O, = AO - -  ~(i - -  k ) N Y .  ( 2 . 1 0 )  

The problem therefore reduces to integrating two linear differential equations 

O ~ - - P e O j - - B i ~ O ~ = - - ~  P e N Y ' - - B i ~ A O c j ;  (2.11) 

Y'  = (Pe,x/Pe)(AO - -  02 - -  ~N(l  - -  k)Y), 
Y - - - - 0  for O > ~ O s ~ Y - ~ l  ~r  0 < O ~  (2.12) 

with t h e  boundary conditions (2.6)-(2.8). Equations (2.12) follows from (2.1) with (2.10) 
taken into account. The solution of the system (2.11)-(2.12) can be written in the form of 
analytic expressions. The dependence of the rate of crystallization on the supercooling of 
the melt at infinity 

Pe A ( 7 - - y ~ - - y ~ - - A )  
AO = P%0 (Ay + 717~) (2.13) 

is of interest, where A = N PeKIB(I -- k)/Pe, y1 and ya are the negative roots of the equation 

73 -- p7 2 -- qy -- A B i ,  ---- 0, 

where p = Pe -- A, q = Bia +MPeK~N + A. 

In the case of weak heat elimination (Bia -> 0) this relationship can be written ex- 
plicitly 

Pe V Pe~ --b 4Bi 1 --[- ] / (  Pe --  A) ~ + 4Ag Pe - -  A 

AO = P%o Pe q- V Pez + 4Bit (2.14) 

where g = 1 + %4/8(1 --k). The shape of the dendrites and the temperature distributions in 
the domains 1 and 2 are determined, respectively, by the formulas 

Y = (Pe~l/~Pe~o) (e ~z -- t ) ,  O1 ---- Osevz, (2.15) 

O9 = AO + (Pe/~P%o)[A - -  (A + ~)e ~z], 

where 8 s = AO-- Pe/PeK^ , y = Pc/2 + (Pea/4 + Bit) x/a , I = (Pc -- A)/2 -- /(Pc -- A)~/4 + AgPe, 
48 is determined from ~2.14). The relationship setting up a connection between the number 
of dendrites in the ingot section N = 2ton, where n is determined by (1.16) and the crystal, 
lization parameters, should be added to these expressions. Omitting intermediate computa- 
tions, we write this relation for s = 1/2 in the form 
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N = (],/2 Pe/b P ~ ? )  ( V  (ee - -  A) 2 -t- 4Ag Pe - -  A - -  Pe) ~/', ( 2 . 1 6 )  

where b = blaT/~-~o/r~. The expression (2.16) characterizes the dependence of the dendrite 
density on the crystallization rate. This dependence is almost linear for sufficiently high 
values of the quantity Pe (crystallization rate). 

The first formula in (2.15) determines the relative size of the dendrite grain YK at the 
end of the two-phase zone as z § ~ as a function of the dimensionless crystallization rate 
Pe. It follows from this relationship that YK decreases with the increase in Pc. This cor- 
responds to known experimental data about breakage of the ingot structure as the crystalliza- 
tion rate increases [9]. As an analysis of (2.13) and (2.14) shows, as Pe § - the relation 
between the crystallization rate and the supercooling of the melt at infinity becomes linear 
(v = Ko(TZo -- Tc~)) which can be used in experiments to determine the kinetic coefficient Ko 
by means of the slope of the curve of the dependence v = f(AT) for large values of AT. 

Theory is compared with known experimental results obtained on the binary alloys Sn + 
0.5 wt.% Bi [i0] (curve i), Sn + 0.5 wt.% Pb and Sn + 1 wt.% Pb [ii] (curves 2and 3,respect- 
tively). Since the influence of the external the heat removal is essential (Bi~ << i) for 
sufficiently high crystallization rates (Pc k i), the computations were performed by using 
(2.14) for Bi~ = 0. Moreover, starting from the dependence of N on Pe found, the quantity A 
was considered independent of Pc, and its value was determined at one of the points of the 
appropriate experimental curve for a given value of PeKo. The following values of the physi- 
cal parameters were used for the computations: for the first alloy T A = 505, T~o = 504, 225, 
a = 0.288, ~/c = 219.6, ro = 0.2, g = 404.75, PeKo = 6542, A = 7.38, and for the second and 
third alloy, respectively, T^ = 505, T l = 504.25, 503.5, a = 0.236, ~/c = 249.57, ro = 
0.2, g = 386, 194,4, PeKo = ~361, 3840,~ = 5.2, 9.27, where T, K, a, em=/sec, ~ /c, K, to, 
em. The theoretical curves (the solid lines) agree well enough with the appropriate experi- 

mental results. 

The author is grateful to V. E. Nakoryakov and V. T. Borisov for discussing the research 

and useful remarks. 
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WAVE FORMATION IN LIQUID FILM FLOW ON A VERTICAL WALL 

S. V. Alekseenko, V. E. Nakoryakov, 
and B. G. Pokusaev 

UDC 532.62 

Theoretical and experimental investigations show that laminar vertical liquid film flow 
is unstable starting with the lowest Reynolds numbers Re. The instability results in the 
origination of periodic waves, which grow rapidly in amplitude with distance and emerge into 
the stationary mode for specific amplitudes. Linear stability of a smooth film was investi- 
gated in many papers [1-5]. The greatest successes have been achieved on the basis of 
numerical methods of calculating the Orr-Sommerfeld equation. Dependences have been obtained 
for the wave amplitude increment, for the phase velocity and wave number of neutral perturba- 
tions and maximum growth waves as a result of the computations. 

Clarity in the nonlinear wave formation mechanism at high Reynolds numbers is substan- 
tially lower. Research on nonlinear waves can be divided into two provisional groups in 
which the cases of low and high numbers Re are exemined, respectively. For the case Re ~ 1 
(here Re = qo/9, qo is the specific mass flow rate, and 9 is the kinematic viscosity), a non- 
linear nonstationary equation is derived for long waves on the film surface by using the 
method of narrow bands [6-8]. For the moderate number range Re ~ 5-50, only a stationary 
equation is derived [9-11], and nonlinear nonstationary waves are analyzed on the basis of a 
system of equatibns of boundary layer type by using the integral relations method. 

There is a definite objective need to derive a universal model equation for nonstatlon- 
ary nonlinear waves which would permit extension of existing approaches and which would be 
valid in a broad range of numbers Re. An attempt to derive such an equation is presented in 
this paper. Results of a linear analysis of this equation are compared with experimental 
results for growing linear waves and with results of other authors. 

i. DERIVATION OF THE EQUATION FOR THE WAVES 

Let us write the Navier--Stokes equations and the boundary conditions for a fluid film 
flowing on a vertical wall (Fig. I) in the dimensionless form 

au* au* " v* au* 3 i [ a~u * a~u * '~ ap*.  
Or* + u *  ~---~- + ay* = Re'---7 + ea---?~ ~-~ ~ + %~'~-] - -  0-~ 7 '  ( 1 . 1 )  

Z / O r *  + Or* + Or* \  3 [ O~'v * 02v * \ 
e~ _ _  Op* . 

Ou* Ov* 
ax--; -5 -- = O; oy* (1.3) 

8~ 40h*/Ox* Ov* Ou* Or* 
t - -  e ~ (Oh*/Ox*) z Oy* -5 ~ -5 e~ ~ = 0 for y = h; 

31/SFil/ae ~ O~h*/Ox .2  2e o v * F t + e 2 ( O h * l O z * ) ~ l  (1.4) 
Ap* = - -  Re~/3 [1 + e 2 (0h*/0z*)~] ~/~ -5 tie @* [ ] ' ~ - - ? ~  

for y = h; 

u* -0, v * = O  for y = O ;  
(1.6) 
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